
lable at ScienceDirect

Journal of Arid Environments 113 (2015) 16e28
Contents lists avai
Journal of Arid Environments

journal homepage: www.elsevier .com/locate/ jar idenv
Trend analysis of MODIS NDVI time series for detecting land
degradation and regeneration in Mongolia

Sandra Eckert a, *, Fabia Hüsler b, 1, Hanspeter Liniger a, Elias Hodel a

a Centre for Development and Environment, University of Bern, Hallerstrasse 10, CH-3012 Bern, Switzerland
b Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
a r t i c l e i n f o

Article history:
Received 28 May 2013
Received in revised form
10 July 2014
Accepted 1 September 2014
Available online 26 September 2014

Keywords:
Degradation
MODIS
NDVI
Time series analysis
* Corresponding author. Tel.: þ41 316315439; fax:
E-mail addresses: sandra.eckert@cde.unibe.ch (S.

unibe.ch (F. Hüsler), hanspeter.liniger@cde.unibe.ch
unibe.ch (E. Hodel).

1 Tel.: þ41 316318552; fax: þ41 316318511.

http://dx.doi.org/10.1016/j.jaridenv.2014.09.001
0140-1963/© 2014 Elsevier Ltd. All rights reserved.
a b s t r a c t

This study examines whether MODIS NDVI satellite data time series can be used to detect land degra-
dation and regeneration areas in Mongolia. Time series analysis was applied to an 11-year MODIS NDVI
satellite data record, based on the hypothesis that the resulting NDVI residual trend vectors would enable
successful detection of changes in photosynthetically active vegetation. We performed regression anal-
ysis, derived regression slope values, and generated a map of significant trends. We also examined land
cover development and meteorological data for the same period.

11-year time series of MODIS 16-day composite NDVI data proved sufficient for deriving statistically
significant trend values for 50% of Mongolia's surface. MODIS land cover products proved suitable for
identifying areas of vegetation cover change. Areas showing positive and negative NDVI trends mostly
coincided with areas of land cover class change indicating an increase or a decrease in vegetation,
respectively. Precipitation changes in the same time period seem to have had an influence on large NDVI
trend areas. The NDVI time series trend analysis methodology applied successfully detected changes due
to deforestation, forest fires, mining activities, urban expansion, and grassland regeneration. These
findings demonstrate that NDVI time series trend analysis is suitable for detecting vegetation change
areas and for identifying land degradation and regeneration.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

According to the United Nations Convention to Combat
Desertification (UNCCD), land degradation in arid, semi-arid, and
dry sub-humid areas e also referred to as drylands e may result
from various factors, including climatic variations and human ac-
tivities (UNCCD, 1994; UNCCD, 2012). It includes diverse processes,
ranging from changes in plant species composition to soil erosion,
and reduces the land's productive potential (Hill et al., 1995;
Reynolds, 2001; Reynolds et al., 2007). Land degradation may
diminish the land's resilience, making it more vulnerable and
reducing its capacity to recover from disturbances. Furthermore,
land degradation can have negative effects on other resources, such
as water, soil, flora, and fauna (Hennemann, 2001a, 2001b). Causes
of land degradation can be natural or man-made. Natural causes
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include periodic stress from extreme and persistent climatic events,
aridity, and droughts. Man-made causes include unsustainable
human land use e for example, overgrazing, deforestation, and
over-cultivation e as well as indirect socio-economic drivers, such
as unstable food market prices and political instability or changes
(NPACD, 1997; UNCCD, 2004; WMO, 2006).

Ecosystems in Mongolia are particularly fragile due to the
country's relatively high altitude and its continental climate. Ac-
cording to the fourth national report on biodiversity (UNCBD,
2009), about 71.8% of Mongolia's territory is affected by degrada-
tion or desertification. Degradation is generally severe, causing not
only a decline in herbage yields but also an overall deterioration of
the ecological environment. A combination of natural factors, such
as climate change, and human activities, such as overgrazing of
pastures, deforestation, intensified crop production on unsuitable
land, and mining activities leads to severe soil and wind erosion,
desertification, and an increased occurrence of sand storms
(Batjargal, 1997; Foggin and Smith, 1996; Lai and Smith, 2003). The
Mongolian government is well aware of these environmental
problems. However, the country's size poses a major challenge.
Mongolia covers an area of 1.564 million km2 and spreads across
latitudes between 41�350 and 52�060 North and longitudes between
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87�990 and 119�570 East. Detailed data on important indicators of
land degradation and desertification e for example in the form of
soil maps, geological maps, or spatial data on land cover, land use,
and livestock distribution e are either non-existent, available only
at a coarse resolution, or outdated. Moreover, precipitation and
temperature recordings of several of the few existing weather
stations were interrupted, and in some cases the measurement
methodology changed over time, making the available meteoro-
logical data difficult to analyze.

Given Mongolia's vast territorial extent, any effort to assess and
monitor the complex processes of land degradation, as well as its
severity, extent, and spatial distribution throughout the country
must make use of remotely sensed data in addition to field data.
The Land Degradation Assessment in Drylands (LADA) project run
by the Food and Agriculture Organization of the United Nations
(FAO) and the United Nations Environment Programme (UNEP)
offers proven methodologies and tools for local-level assessments
based on field data (LADA, 2012). On a national or even continental
scale, satellite remote sensing needs to be, and has widely been,
used as means of detecting and classifying changes in the condition
of the land surface over time (Coppin et al., 2004; Lu et al., 2004).
Satellite sensors provide consistent and repeatable measurements
at predefined spatial and temporal scales that are capable of
capturing change, including natural and anthropogenic distur-
bances (Jin and Sander, 2005).

Several studies attempting to assess and monitor the complex
processes of land degradation and desertification made use of
remote sensing methodologies to model some of the indicators
that describe one or more aspects of desertification. By relating
these indicators to other climatic variables, such as rainfall, air
temperature, land cover, and land use, they tried to reveal geo-
and biophysical causes of observed changes in vegetation
greenness or net primary production (NPP) (Fensholt et al., 2009;
Herrmann et al., 2005; Hickler et al., 2005; Xiao and Moody,
2005). On a continental scale, Symeonakis and Drake (2003),
for example, proposed a desertification monitoring system for
sub-Saharan Africa that uses remotely sensed data to model
vegetation cover and rain-use efficiency, while surface run-off
and soil erosion were modeled based on spatial data from other
sources. When combined, these indicators can serve to identify
areas that are particularly susceptible to degradation. This
method has potential for near-real-time monitoring. On a na-
tional scale, Omuto et al. (2011) developed a method for identi-
fying the rate and extent of land degradation in Somalia.
Interpolated precipitation data were combined with corre-
sponding Advanced Very High Resolution Radiometer (AVHRR)
Normalized Difference Vegetation Index (NDVI) time series, land
cover and land use data, and a digital elevation model (DEM). The
trend in the relationship between NDVI and precipitation was
then combined with a coarse degradation map generated on the
basis of expert knowledge.

On a regional scale, in 2004 the European Space Agency (ESA)
established the DesertWatch project to develop an information
system based on remote sensing technology for monitoring land
degradation trends over time (extension, 2012). At the outset, this
project focused on the Mediterranean countries of Portugal, Italy,
and Turkey, where detailed data on several indicators are available.
Later the approach was adapted for use in Mozambique and Brazil
in order to demonstrate that it can be transferred to other areas,
including areas where data might not be as readily available, and
that it can be applied globally (extension, 2012). The methodology
produces a land degradation index by integrating land use and land
cover data with a desertification susceptibility indicator consisting
of NDVI, soil brightness, and a meteorological parameter derived
from long-term precipitation observations.
The studies mentioned, as well as other studies, have explored
ways of detecting changes in vegetation from local to global scales,
mostly by including and monitoring the NDVI and relating the
amount of red and near-infrared reflected energy to the amount of
vegetation present on the ground (Colwell, 1974; Huete et al., 1997).
Reflected red energy decreases with plant development due to
chlorophyll absorption in actively photosynthetic leaves (Huete
et al., 1999). The NDVI is a normalized transformation of the near-
infrared (NIR) to red (RED) reflectance ratio (rNIR/rRED),
designed to standardize vegetation index values so they are
between �1 and þ1, with 0 standing for “no vegetation” and
negative values for “non-vegetated surfaces” such as water or snow
(Silleos et al., 2006). Vegetation indices are robust, empirical
measures of vegetation activity at the land surface. They are
designed to enhance the vegetation signal from measured spectral
responses by combining two (or more) different wavebands, often
the red (0.6e0.7 mm) and near-infrared wavelengths (0.7e1.1 mm).
They provide consistent spatial and temporal comparisons of global
vegetation conditions; these can be used to monitor the Earth's
terrestrial photosynthetic vegetation activity, thus enabling
phenological change detection and biophysical interpretations
(Solano et al., 2010).

Over the past three decades, researchers developed methods for
analyzing time series and detecting trends, with a view to detecting
changes and even separate different type of changes. More recently,
Eastman et al. (2009) introduced a procedure for analyzing sea-
sonal trends in time series of environmental data derived by remote
sensing. This technique, called Seasonal Trend Analysis (STA),
proved to be robust to short-term interannual variability. Accord-
ingly, it is very effective for focusing on the general nature of
longer-term trends in seasonality, enabling the derivation of both
gradual and abrupt changes in land cover.

Considering the lack of up-to-date spatial data on land degra-
dation and regeneration areas in Mongolia, and given the avail-
ability of 11 years of Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data as well as the newly
developed methods for time series trend analysis, in the present
study we sought to apply time series analysis to an 11-year MODIS
NDVI satellite data record. We hypothesized that the derived NDVI
residual trend vectors might successfully detect changes in
photosynthetically active vegetation and thus serve as an indicator
for land degradation and regeneration processes. The study design
included calculating the significance of detected trends in the
analyzed time series. In addition, we were interested in the re-
lationships between land cover, land cover change, and the detec-
ted NDVI trends, as well as the question of whether a similar trend
pattern can be observed in pointwise precipitation and tempera-
ture data.

2. Materials and methods

2.1. Satellite data

This study is based on an analysis of MODIS data recorded by
two sensors on board of the NASA's Terra and Aqua platforms,
which were launched in 1999 and 2002, respectively. The two
satellites are in a sun-synchronous, near-polar orbit at 705 km
altitude and cross the equator every day at 10:30 am local time
(NASA, 2012). For this study, two products were downloaded and
analyzed: MCD12Q1 Land Cover Type (Collection 5) and MOD13Q1
Vegetation Indices. MODIS products are provided in HDF-EOS
format (Hierarchical Data Format for NASA's Earth Observing Sys-
tem). The standard projection system is sinusoidal grid projection;
MODIS tiles measure 4800 by 4800 pixels, which corresponds to
about 1200 by 1200 km. All MODIS products can be accessed and
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downloaded free of charge from the Earth Observing System Data
and Information System (EOSDIS) internet portal.

The MODIS Land Cover Type product contains multiple classi-
fication schemes describing land cover properties that are derived
from observations spanning a year's input of Terra and Aqua data
(NASA, 2012). For this study, the 17-class International Geosphere-
Biosphere Programme (IGBP) classification scheme was used. We
workedwith themost recent Collection 5MODIS Global Land Cover
Type product, which was made available in 2010 and covers the
years 2001e2009 at a spatial resolution of 500 m.

The MODIS 16-day composite vegetation indices product was
analyzed for the years 2001e2011. It contains the enhanced vege-
tation index (EVI) and the normalized difference vegetation index
(NDVI) at a spatial resolution of 250 m. It consists of the most
reliable pixel values (Huete et al., 1999).

2.2. Meteorological data

Meteorological data in Mongolia are recorded at 69 registered
weather stations by the National Agency for Meteorology, Hydrol-
ogy and Environment Monitoring of Mongolia (NAMHEM). Unfor-
tunately, NAMHEM were unable to provide the entire data record
due to national policy restrictions. Therefore, the Climate Research
Unit Time Series (CRU-TS) global long-term climate database was
used as an alternative. It covers the period from 1901 to 2009, and
data are globally gridded at a spatial resolution of 0.5� (updated
from Mitchell and Jones, 2005). The grids are based on raw station
data. Each monthly grid is an interpolation based on the set of
stations available at that moment in time. Thus the highest accu-
racy can be expected at the locations of weather stations.

2.3. MODIS NDVI time series analysis

The analysis of raster data time series is based on a number of
statistical techniques implemented in the statistical program R (R
Fig. 1. Diagram of the met
Development Core Team, 2008). The different methodological
working steps for the MODIS NDVI time series analysis as well as
the analysis of meteorological data are illustrated in Fig. 1.

First the MODIS data stacks of 253 datasets covering 11 years
of 16-day composite NDVI recordings were searched and cor-
rected for missing and erroneous data by reviewing the quality
assurance flags that were provided together with the data.
Missing pixel data values were replaced with the corresponding
11-year mean of the specific time series vector. Negative values
were replaced with a zero; they occurred only in the case of
water bodies, which were among the land cover classes that were
excluded from the analysis. In a next step, the time series vectors
were filtered using the SavitzkyeGolay filter, in order to smooth
spikes and data outliers. This filter was chosen because it has
been successfully applied in previous studies (Cowpertwait and
Metalfe, 2009; Fontana et al., 2008; J€onsson and Eklundh,
2004; R Development Core Team, 2008). After this, the season-
ality pattern of every yearly seasonal time interval using the
corresponding annual mean was calculated and excluded from
the vector. On the remaining anomalies simple linear regression
modeling was then applied to extract the regression parameters
of every time series vector (De Jong et al., 2011). Time was
defined as the independent variable and the NDVI values as the
dependent variable. The 104 million resulting individual linear
regressions consisting of correlation coefficient and regression
slope values indicate the strength and magnitude of the calcu-
lated trends (Fensholt and Proud, 2012).

The precision of trend estimates is strongly influenced by the
variability and autocorrelation of the underlying noise process
(Tiao et al., 1990; Weatherhead et al., 1998). Thus, the time
needed to detect any future trends can be calculated by deriving
these two statistical parameters from the existing time series
vectors. According to Weatherhead et al. (1998), the number of
years needed to give the trend significance can be approximated
by:
hodological workflow.



Fig. 2. a) Linear regression slope values for trends derived from MODIS 16-day composite NDVI observations from 2001 to 2011. b) Significant linear regression slope values for
trends derived from MODIS 16-day composite NDVI observations from 2001 to 2011. A trend threshold value of 0.5 was defined, corresponding to an NDVI change of 0.0126 per 16-
day interval.
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Where s is the variability or standard deviation, 4 is the autocor-
relation, and u0 is the expected trend of the data (Weatherhead
et al., 1998). For u0 a trend threshold value of 0.5 was defined,
corresponding to an NDVI change of 0.0126 per 16-day interval.
This was done based on the theory and results presented by
Weatherhead et al. (1998, 2002). The regression slopes of all pixel
locations were thus categorized into “negative”, “positive”, “no
trend”, and “not significant” categories and then mapped
accordingly.
2.4. Land cover change analysis

The MODIS land cover type product was used a) to obtain first
insights regarding possible reasons for observed trends; b) to
identify areas of potential change; and c) to exclude water bodies
and urban areas. We adapted the 17 land cover classes defined by
IGBP, reducing them to eight classes according to the existing land
cover in Mongolia. Thus, the permanent wetlands and water clas-
ses, all forest classes, open and closed shrubland, as well as woody
savannas and savannas were merged; all other existing land cover
classes remained as defined by IGBP. The final land cover class
scheme used in this study is shown in Fig. 3. Then we analyzed the
number of times each pixel had changed its land cover class be-
tween 2001 and 2009, as well as the related source and destination
classes. On this basis, pixels were categorized in one of the
following categories: class change indicating vegetation regenera-
tion, hereafter referred to as “positive” class change (includes
changes from grassland or shrubland to forest, and from barren or
Fig. 3. Land cover in Mongolia in 2009, according to the lates
sparsely vegetated land to grassland or shrubland); class change
indicating vegetation degradation, hereafter referred to “negative”
class change (includes changes from forest to grassland, shrubland,
or barren and sparsely vegetated land, and from grassland and
shrubland to barren and sparsely vegetated land); and no change or
multiple class changes (including changes between similar land
cover classes, e.g. from grassland to shrubland and vice versa, as
well as multiple class changes indicating areas in transition).

2.5. Meteorological data time series analysis

First, the time series vectors of precipitation and temperature at
the geographic locations of the 69 weather stations in Mongolia
were extracted from the CRU-TS database. This was done for the
period of 2000e2009, in accordance with the time span covered by
the MODIS satellite data products used. Then simple linear
regression modeling was performed. The resulting 69 regression
slopes were categorized into the three trend categories as it had
been done for the MODIS NDVI data analysis. The derived MODIS
NDVI trend pattern and the pointwise precipitation and tempera-
ture trend pattern were visually compared. In addition to calcula-
tion of trends, the precipitation and temperature time series
vectors were plotted and the temporal pattern was visually
analyzed to enhance interpretation of the MODIS NDVI trend map
and the meteorological trend data points.

3. Results and discussion

3.1. MODIS NDVI linear trends from 2001 to 2011

Fig. 2a illustrates the trends derived from MODIS NDVI time
series from 2001 to 2011. Areas showing positive trends are most
widespread in the center of Mongolia and towards the north and
t MODIS land cover product (IGBP classification scheme).
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northeast of the country. Areas showing negative trends, besides
being interspersed between areas with positive trends in the center
of Mongolia, occur above all in the far west, around the country's
capital, Ulaanbaatar, and in the forest areas in the north and east. In
the northwestern and southern parts of the country, where the land
is largely barren and sparsely vegetated (Fig. 3), only few slight
trends were observed; mostly, these areas showed trends within
the threshold values of ±0.5 and can thus be considered stable. In
terms of land cover classes, positive and negative trends occur in
barren and sparsely vegetated areas, grassland areas, and forest
areas. Negative trends are additionally present in open shrublands.
A closer look at small patches of land degradation and regeneration
will be taken in Section 3.4 on the validation of results.

In order to determine the significance of trends, we analyzed
their variability and autocorrelation. Fig. 2b depicts only trends
with significant linear regression slope values. The figure shows
that some of the identified larger trend areas as well as most areas
in northern Mongolia have to be excluded from further analysis if
only significant trend vectors are considered. Nonetheless, the
trends derived from the analyzed time series vectors are significant
for more than 50% of the country. In order to provide significant
trends for 95.5% of Mongolia's surface, another four years of MODIS
NDVI data would need to be included in the analysis. For the
remaining 4.5% of Mongolia, it would take over 15 more years of
MODIS data for trends to become significant. The spatial distribu-
tion of these findings is shown in Fig. 4.

3.2. Land cover change from 2001 to 2009

In order to find out which land cover classes show trends and
thus may be affected by change, we analyzed MODIS land cover
classification products from 2001 to 2009 and compared themwith
the generated MODIS NDVI trends. It should be noted that such
Fig. 4. Years of data records required to detect an NDVI trend of 0.0126 (corresponding
comparison is only valid where “positive” or “negative” land cover
class changes correspond with an increase or decrease respectively
in NDVI value, which is the case for the defined “positive” and
“negative” land cover class changes. It is not valid for the “no
change or areas in transition” category, where shrubland may show
higher NDVI values than grassland depending on the season. Thus,
Fig. 5 illustrates only areas for which permanent land cover class
changes were detected. A comparison of Fig. 5 with Fig. 2 reveals
that areas of positive and negative land cover class changes coin-
cide with some of the larger areas for which positive and negative
NDVI trends were detected, respectively. By contrast, small areas
showing NDVI trends only coincide with a change in land cover
class if the latter clearly shows in the MODIS spectral bands and,
consequently, in the NDVI product. This is the case, for example, for
newly constructed buildings near Ulaanbaatar as well as in the
south of Mongolia, which led to both a negative NDVI trend and a
switch from another land cover class to “Urban and built-up”. Slight
changes in land cover or changes affecting only very small areas
(e.g. an urban development site or a new mining site) may not be
detected by the MODIS land cover classification product, as they do
not cause a clear enough spectral change in the MODIS satellite
data.

In general, changes occurred mainly at the boundaries between
grassland and barren and sparsely vegetated land, as well as be-
tween shrubland and grassland. This indicates that such transition
areas might be highly sensitive to natural or anthropogenic im-
pacts. But a change in land cover class over a nine-year observation
period may have other reasons as well: a) such transition areas
might be highly sensitive to interannual variability in precipitation
and temperature; b) they might be highly sensitive to the classifi-
cation algorithm; or c) the change might have resulted from diffi-
culties in clearly defining the land cover class, for example due to
the similarity of open shrubland, grassland, and barren and
to the trend threshold value u0 ¼ 0.5) for the studied area and time series vectors.



Fig. 5. Visual comparison of NDVI trends and land cover class change trends.

Fig. 6. Linear regression slope values for trends derived from MODIS 16-day composite NDVI observations from 2001 to 2011, overlaid with annual precipitation trends calculated
based on 10 years of measured precipitation data. Numbered circles indicate the locations of the validation points.
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Fig. 7. Monthly and annual precipitation values for a) Choir, b) Tosontsengel, and c) Matad. Gaps indicate months for which no precipitation data were recorded. The regression line
was calculated for annual precipitation values. Choir is an example of decreasing yearly precipitation sums, Tosontsengel is an example of increasing annual precipitation values and
Matad represents an example of high variability in annual precipitation values.



Table 1
In-situ and multi-temporal Landsat 5 TM data points used to validate and explain
positive and negative trends derived from time series vectors.

- Multi-temporal
landsat TM 5 data
- In situ observations

ID Type of land
cover change

Reference point Regression
slope

Latitude Longitude

LT5_131026_2001267
LT5_131026_2011263

1 Deforestation 49.067 107.822 �3.17
2 Deforestation 48.674 108.056 �11.06
3 Deforestation 49.261 108.375 �15.90
4 Forest Fire 48.765 107.493 �8.18
5 Forest Fire 49.011 106.809 �5.46
6 Forest Fire 49.077 107.588 �17.15
7 Forest Fire 49.620 107.126 �0.49
8 Forest Fire 48.551 107.212 �10.53

LT5_133026_2000263
LT5_133026_2010242

9 Forest Fire 49.661 103.842 �2.90
10 Forest Fire 49.664 103.654 �2.28

LT5_131027_2001251
LT5_131027_2011247

11 Forest Fire 49.710 105.119 �1.79

LT5_137025_2000259
LT5_137025_2011273

12 Grassland 50.993 99.210 �1.14
13 Grassland 50.385 99.0241 �1.46

LT5_131026_2001263
LT5_131026_2011263

14 Grassland 48.151 107.618 �1.48

LT5_133026_2000263
LT5_133026_2010242

15 Mining 48.191 104.315 �2.25
16 Mining 48.299 104.408 �7.95
17 Mining 48.436 104.545 �6.27
18 Mining 49.022 104.137 �5.70

LT5_130030_2000256
LT5_130030_2010235

1929 Mining 43.035 106.839 �0.61

LT5_131026_2001263
LT5_131026_2011263

20 Mining 48.744 106.168 �3.09
21 Mining 49.229 106.458 �7.42
22 Mining 49.279 106.815 �3.17
23 Mining 49.346 106.923 �1.15
24 Mining 49.479 107.373 �6.40

LT5_131027_2001251
LT5_131027_2011247

25 Settlement 47.898 106.926 �4.73
26 Settlement 47.935 106.963 �1.59

Photography 27 Forest Fire 47.822 106.872 �0.95
Photography 28 Forest Fire 48.152 106.525 �7.79
Photography 29 Grassland 47.458 92.226 2.25
Photography 30 Grassland 47.407 92.062 1.11
Photography 31 Infrastructure 47.941 106.473 �0.27
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sparsely vegetated land. Examples of known classification errors
are found in eastern Dornod and in southern Dornogovi. In Dornod,
large areas were misclassified as agricultural areas, and in Dorno-
govi a large area was misclassified as grassland; in both cases this
resulted in erroneous land cover class changes.

3.3. The temporal behavior of precipitation and temperature
measurements

In order to understand the impact of meteorological parameters
on NDVI trends, the derived MODIS NDVI trend pattern and the
pointwise precipitation and temperature data as well as their trend
pattern were visually compared. The analysis shows that temper-
ature remained stable for all 69 locations considered; temperature
maximum and minimum values as well as the monthly means did
not vary much since 2000. By contrast, annual precipitation values
display regression trends over the observed 10-year period.
Regression slopes were calculated for annual precipitation over the
10 years considered. The 69 locations were classified as “stable”
when trends ranged within ±0.25. Slope values >0.25 indicate a
positive trend, slope values <0.25 a negative trend. As shown in
Fig. 6, locations showing positive and negative annual precipitation
trends mostly coincide with large NDVI trend areas. Annual pre-
cipitation values in Mandalgovi, Choir, and Khujirt e all situated
near large negative NDVI trend areas e have shown a decreasing
trend since 2000. The same is true for Erdenetsagaan and Tsogt,
which are also both situated in areas where a simultaneous nega-
tive NDVI trend was observed. Conversely, several locations in areas
where we had detected a positive NDVI trend had recorded
increasing annual precipitation values since 2000: this was the case
in Khalkhgol in the east of the country, in Tosontsengel and Tsetsen-
Uul in the northwest, and in most parts of northern Mongolia.
However, there are also areas where annual precipitation and NDVI
exhibited opposite trends. This was the case, for example, in Madat
in the east, Sükhbaatar and Renchinlkhümbe in the north, and
Bayanbulag in themiddlewest. Although these precipitation trends
observed between 2000 and 2009 may be temporary phenomena,
they might still partially explain the large clusters of NDVI trend
areas that we detected. Some locations showed no clear trends; but
interannual variation in annual precipitation is high in some areas,
indicating that there are both extremely dry and extremely wet
years. This is also illustrated in Fig. 7, which shows annual precip-
itation measurements for three selected locations. The conse-
quences that such extremes may have for the vegetation cover in
the long term are still unknown. A longer reliable precipitation
measurement record is needed to draw any conclusions regarding
existing rainfall trends. This finding is also confirmed by Wesche
and Treiber (2012).

3.4. Validation using in-situ observations and multi-temporal high-
resolution satellite data

The spatial extent of the study area, the multi-temporal nature
of degradation and regeneration processes, as well as the many
interrelated natural and human influences on land degradation and
regeneration make validating the NDVI time series trend map a
challenging task. By analyzing land cover, land cover change, and
meteorological data, we tried to explain the larger clusters (i.e.
regional) of NDVI trend areas identified. Identifying local NDVI
trends and land cover changes, however, requires information of a
higher spatial resolution. Moreover, it would also be useful to know
how the land was used and managed over the last decades. But
such detailed spatial information does not exist. Therefore, we
combined multi-temporal high-resolution datasets acquired in
2000 and 2010 with in-situ observations confirming a selection of
degradation types, as well as with auxiliary data such as a geo-
spatial national forest firemonitoring dataset and a nationalmining
activity dataset. We classified 31 validation points into six degra-
dation classes. For each validation point, the corresponding trend
line slope and intercept value were derived and visually docu-
mented using multi-temporal Landsat 5 TM data or, where avail-
able, photographs. All validation points are listed in Table 1. Their
distribution is shown in Fig. 6.

Six validation examples are presented in Figs. 7 and 8. Fig. 8 il-
lustrates two examples where newly introduced sustainable grass-
land management measures have led to an increase in vegetation
cover and the recoveryof a degradedpatch of grassland (ID29 and ID
30). Both of these increases in vegetation represent gradual, small
changes over a fairly long period in time; nonetheless, both were
detected by the trend analysis methodology. The two patches are
rather small in size. Another example of a change occurring over a
fairly long time period is the result of a lack in the planning and
management of road networks in very remote areas of Mongolia,
which led to thedevelopmentofmultiple parallel dirt tracks, causing
land and soil degradation (ID 31). This trend analysis methodology
correctly recognized some of the newer tracks as a negative change.
ID 28 shows a small area where a rapid change occurred in a single
event during the observed time frame: a forest fire. The patch was
clearly detected in the time series analysis. In Fig. 9, ID 15 and ID 1
confirm two examples of change using multi-temporal Landsat TM
data acquired in 2000 and 2010. ID 15 illustrates the Zaamar gold
mine. The expanded, new mining areas are clearly recognized as a
strong negative trend in the time series analysis. ID 1 shows a large
forest fire that was clearly recognized as well.



Fig. 8. Four selected validation points documented by photographs. a) A patch of grassland that has improved substantially since it is being managed sustainably; b) a patch of
grassland that was fenced for regeneration and protection from grazing; c) changing dirt tracks have caused this land to degrade since 2000; d) forest destroyed by a fire a few years
ago.
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Given the country's vastness, the enormous amount of small
patches showing distinct trends, and the many possible reasons for
change and trends in NDVI, it is impossible to validate every patch
showing a trend. However, with the help of higher-resolution
multi-temporal satellite data analysis and, where available, pho-
tographs taken during field data collection, wewere able to explain
a selection of trends indicating changes caused by land degrada-
tion, land regeneration, deforestation, and mining activities. These
examples included both abrupt and gradual changes affecting both
large and small areas.

3.5. Limitations

Deriving significant trends from NDVI time series requires a
fairly long record of NDVI datasets. This is particularly true for areas
with a high seasonal variability in NDVI. For this study, MODIS NDVI
data from 2001 to 2011 were available. But with both MODIS sen-
sors, Terra and Aqua, still being in orbit and acquiring data, there is
a good chance that sufficiently long NDVI data records can be
collected for most sparsely vegetated dryland and grassland steppe
areas in the world that are affected by land degradation and
regeneration. However, the causes of land degradation and regen-
eration can only be understood based on detailed and accurate
ancillary information on land cover, land use, land management,
and livestock rates, as well as reliable long-term meteorological
data and other similar parameters. For Mongolia, this information
was only partially available. Accordingly, information on land cover
had to be derived from a global land cover product available for the
years 2001e2009 that contained no information regarding its ac-
curacy for Mongolia; other data on land use and land management
were not available. Reliable meteorological data records were
available only as of 2000 and also until 2009, and livestock statistics
could only be obtained at the aimag (province) level, which is too
coarse for a spatial analysis. The data situation may be similar in
many other areas of the world that are affected by land degradation
and desertification.
Although the analyzed datasets vary by one or two years in their
length and the years they cover, it is unlikely that these differences
should have affected the resulting trends. The same is true with
regard to the datasets’ varying spatial resolution.

Validation of the derived NDVI trend map indicating land
degradation and regeneration areas requires either cloud-free
multi-temporal high-resolution satellite data or a well-
documented database on land cover or land use change. Both do
not always exist.

Seasonal Trend Analysis (STA) is robust to interannual variability
and is a very effective procedure for focusing on the general nature
of longer-term trends in seasonality. However, the method does not
enable clear identification of, and differentiation between, a) sea-
sonal changes, driven by annual temperature and precipitation
interactions impacting plant phenology and proportional cover of
land cover types with different plant phenology; b) abrupt changes,
caused by disturbances such as deforestation, urbanization, floods,
and fires; and e most importantly e c) gradual changes due to
interannual climate variability, gradual changes in land manage-
ment, or land degradation (Verbesselt et al., 2010).
4. Conclusion

This study explored 11 years of MODIS 16-day composite NDVI
time series to detect land cover change e in particular land
degradation and regeneration areas e in Mongolia. Time series
vectors were analyzed for trends using regression analysis.
Regression slope values were derived, and a trend map was
generated that takes account of each time series vector's signifi-
cance. In order to gain a better understanding of the derived trend
areas, we also examined land cover development from 2001 to
2009, as well as trends in meteorological data from 2000 to 2009.
High resolution satellite data and field photographs were used to
validate small, local NDVI trends. The following conclusions can be
drawn from this research:



Fig. 9. Two selected validation points confirmed by two Landsat TM 5 scenes acquired in 2000 and 2011. a) Expansion of mining activities at the Zaamar gold mine (ID 15). b) Area
deforested due to a forest fire (ID 1). Both examples are overlaid with the negative trend layer, which clearly indicates the resulting land cover change.
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� Areas showing positive trends are most widespread towards the
north and northeast of Mongolia, as well as in the Gobi desert in
central and southern Mongolia. Negative trends are less
frequent overall; they are interspersed between areas showing
positive trends in the center of Mongolia, and slightly more
widespread in the far west, around the country's capital city,
Ulaanbaatar, and in the forest areas in the north and the east of
the country.
� Eleven-year time series of MODIS 16-day composite NDVI data
provided a sufficient basis for deriving statistically significant
trend values for 50% of Mongolia's surface. In order to derive
significant trends for 95.5% of the country, another four years
of MODIS NDVI data is required. To date, the majority of pos-
itive and negative trends detected in the more densely vege-
tated north and northeast of Mongolia are not statistically
significant.
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� The MODIS land cover product proved suitable for identifying
areas where the vegetation cover had increased or decreased, as
well as areas where the vegetation cover had not changed much
since 2001. Moreover, the product enabled the identification of
transition zones where the land cover class had repeatedly
changed back and forth.Wewere also able to detect erroneously
classified areas.

� Indicated areas of positive and negative land cover class change
mostly coincided with areas showing positive and negative
NDVI trends, respectively.

� Linear regression trends of the 10-year annual precipitation data
coincide well with the detected larger NDVI trend areas. This in-
dicates that changes in precipitation might have an influence on
largeNDVI trend areas. No trendswere observed for temperature.

� The validation of smaller, more localized NDVI trends with the
help of multi-temporal high-resolution satellite data as well as
field photography was successful. Changes due to deforestation,
forest fires, mining activities, urban expansion, and grassland
regeneration were successfully detected by the applied NDVI
time series trend analysis methodology.

Using a selection of validation points to explain some of the
trend areas, we demonstrated thatMODIS NDVI time series analysis
is suitable for detecting both large-scale and small-scale vegetation
change areas and, hence, for identifying land degradation and
regeneration in Mongolia. In cases where these changes occurred
rapidly or abruptly, causality is often given and the causes are easy
to determine. In some cases, it might be enough to acquire and
analyze a pre-event and a post-event satellite dataset with a high or
very high resolution. However, in cases where changes occur
gradually over a fairly long period of time, as is often the case with
land degradation or regeneration, understanding the processes and
causes involved might be more difficult. Furthermore, it is not
knownwhether the change will be permanent or whether it is only
the expression of a short-term variability. For these reasons, our
next research steps will focus on implementing the improved
Breaks For Additive Season And Trend (BFAST) methodology,
developed by Verbesselt et al. (2010). This method iteratively es-
timates the time and number of changes, and characterizes change
by its magnitude and direction. Time series are decomposed into
multi-year trend, seasonal variation, and a remainder component.

In addition, detailed spatial information e for example on his-
torical and currently applied land management practices, livestock
rates, topography, and long-term precipitation and temperature
developments, to name only a few e need to be collected to un-
derstand and explain gradual changes in land cover and identify
reasons for the emergence of larger clusters of NDVI trend areas.
Validation of the derived NDVI trend dataset will be continued
using high-resolution satellite data and field visits; the focus will be
on areas that have experienced either land degradation, natural
regeneration or restoration activities, in order to further develop
the methodology's applicability. Furthermore, its transferability
will be tested by applying it in other countries.
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